Quadrangulations of Planar Sets
نویسندگان
چکیده
A linear-time algorithm for decomposing recti-linear star-shaped polygons into convex quadrilaterals, " Proc.
منابع مشابه
Experimental results on quadrangulations of sets of fixed points
We consider the problem of obtaining “nice” quadrangulations of planar sets of points. For many applications “nice” means that the quadrilaterals obtained are convex if possible and as “fat” or squarish as possible. For a given set of points a quadrangulation, if it exists, may not admit all its quadrilaterals to be convex. In such cases we desire that the quadrangulations have as many convex q...
متن کاملOn the Sphericity of Scaling Limits of Random Planar Quadrangulations
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
متن کاملThe three-point function of planar quadrangulations
We compute the generating function of random planar quadrangulations with three marked vertices at prescribed pairwise distances. In the scaling limit of large quadrangulations, this discrete three-point function converges to a simple universal scaling function, which is the continuous three-point function of pure 2D quantum gravity. We give explicit expressions for this universal threepoint fu...
متن کاملRecursive generation of simple planar quadrangulations with vertices of degree 3 and 4
We describe how the simple planar quadrangulations with vertices of degree 3 and 4, whose duals are known as octahedrites, can all be obtained from an elementary family of starting graphs by repeatedly applying two expansion operations. This allows for construction of a linear time generator of all graphs in the class with at most a given order, up to isomorphism.
متن کاملScaling Limit of Random Planar Quadrangulations with a Boundary
We discuss the scaling limit of large planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We consider a sequence (σn) of integers such that σn/ √ 2n tends to some σ ∈ [0,∞]. For every n ≥ 1, we call qn a random map uniformly distributed over the set of all rooted planar quadrangulations with a boundary having n faces and 2σn half-edges on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1985